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ABSTRACT 

This paper presents an obstacle filtering algorithm that 

mimics human driver-like grouping of objects within a model 

predictive control scheme for an autonomous road vehicle. In the 

algorithm, a time to collision criteria is first used as risk 

assessment indicator to filter the potentially dangerous obstacle 

object vehicles in the proximity of the autonomously controlled 

vehicle. Then, the filtered object vehicles with overlapping 

elliptical collision areas put into groups. A hyper elliptical 

boundary is regenerated to define an extended collision area for 

the group. To minimize conservatism, the parameters for the 

tightest hyper ellipse are determined by solving an optimization 

problem. By excluding undesired local minimums for the 

planning problem, the grouping alleviates limitations that arise 

from the limited prediction horizons used in the model predictive 

control. The computational details of the proposed algorithm as 

well as its performance are illustrated using simulations of an 

autonomously controlled vehicle in public highway traffic 

scenarios involving multiple other vehicles. 

 
1. INTRODUCTION 
 

The adoption of autonomous vehicle technology has 

immense potential for enhancing the safety and efficiency of the 

transportation systems as well as for reducing energy 

consumption and environmental pollution. However, in-addition 

to the many regulatory and infrastructure issues that have yet to 

be fully addressed, technically, the motion planning and control 

of autonomous road vehicles in public traffic is not a fully solved 

problem. This is not only because of the nonlinear differential 

constraints of the vehicle dynamics, but also the requirement of 

handling uncertainties from the environment, such as avoiding 

other static and moving object/vehicles and obeying changing 

traffic signs/signals and lane marks, while satisfying other 

objectives, e.g. passenger desired speed and comfort or 

maximizing energy/fuel efficiency.  

Most existing planning algorithms come from the robotics 

field, and apply approximations to simplify the planning problem. 

Specifically, those motion planning methods dealing with 

differential constraints and obstacle avoidance can be roughly 

divided into three categories [1]: sampling-based methods, 

decoupling methods and mathematical programming methods. In 

the sampling-based method, the state space and input space of the 

autonomously controlled vehicle (ACV) can be deterministically 

discretized [2] or randomly sampled [3] in lattices from which the 

best collision free trajectories can be searched for. However, the 

existence and optimality of the solution depends on the size of the 

lattice, namely, they are guaranteed in resolution or probability 

[4]. And the computational time increases along with the lattice 

size. In decoupling methods, the planning problem is usually 

decomposed into two easier sub-problems [5]: first, applying a 

path planner (could be based on cell decomposition as in [6], or a 

sampling-based method) to find the waypoints in the 

configuration space, considering the shape of the ACV, and then 

using a close-loop controller to track those waypoints. The 

differential constraints are typically only applied to the latter sub-

problem. Nevertheless, it’s hard to prove the existence and the 

optimality of the collision-free solution, especially in the 

presence of uncertainties. Mathematical programming methods 

applies constrained numerical optimization to find the motion 

plan which guarantees a conditional existence and optimality of 

the solution based on the convexity of the problem formulation 

and the quality of the initial guess [7]. 

Model predictive control (MPC [8]), which belongs to the 

last group, is receiving significant attention in motion planning of 

ACVs perhaps since its finite receding horizon optimization 

scheme models human drivers very well [9]. Ref [10] has applied 

MPC for static obstacle avoidance and [11] has formulated it as a 

local reactive controller for trajectory planning to simultaneously 

track the path and avoid dynamic obstacles. In [12] [13], the 

motion planning and guidance of ACVs are formulated for 

general public traffic scenarios by adopting coordinate systems 

that treat lane centerlines as reference paths and uniformly 

expressing the motion of the controlled vehicle and all other 

objects, traffic rules/signs, lane limits, and road friction limits 

within the prediction horizon. The authors of the present paper 

have also extended the framework to the case of multi-lane 

scenarios by first structuring the controlled vehicle’s maneuvers 
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in finite state machines which lead to a hybrid system framework, 

where rule-based [14] and optimal maneuver selections can be 

sought [15].  

When formulating obstacle avoidance constraints for the 

prediction horizon, it is possible to model the dynamic motion of 

surrounding obstacle vehicles. However, to do this, one 

invariably needs to impose some assumptions about the unknown 

future inputs to these obstacle vehicles, inputs which are not 

generally available to the ACV controlled by MPC. However, by 

using the latest information about obstacles and the environment 

constructed from available sensing via radar, lidar, camera and 

V2V or V2I communications, one can minimize the required 

complexity of the models needed to describe the motions of the 

object vehicles. This can in turn help to reduce the computations 

of the MPC so that they can be completed fast enough and then 

take advantage of frequent updates. Using the MPC internal time 

as a state variable and the latest accelerations, speeds and 

positions of obstacle objects obtained by sensing or 

communication, one can derive algebraic descriptions of the 

motion of the geometries representing obstacle object vehicles for 

the whole prediction horizon [13]. 

There are several ways of modeling the geometric 

descriptions in the 2D configuration space [4], including e.g. 

polygonal models [16], described by the combination of linear 

curves; semi-algebraic models, like polynomials; or algebraic 

models like circles, ellipses [17] or hyper-ellipses [18]. Algebraic 

models are more efficient in describing obstacles with multi-

edges since they generally need fewer parameters to be specified. 

For example, for describing a rectangular obstacle (4 edges), 

applying linear curves requires 8 parameters, while only 4 

parameters are required for a conservative ellipse or hyper-ellipse. 

In our previous work [12] [14] [15], ellipses are used to describe 

the geometry of static/dynamic vehicular obstacles for MPC-

based motion planning. It can be argued that ellipses naturally and 

conservatively describe the 2D geometry of modern road vehicles. 

However, possible overlaps in the prevailing distribution of the 

obstacles/ellipses may create undesirable local minima (or global 

minima for the finite horizon planning problem), which may trap 

the ACV. In addition, in the presence of more obstacle object 

vehicles around the ACV, the total number of evaluations for 

constraint violation/collision detection increases, which increases 

the complexity of, and the execution times needed for solving the 

optimization problem at each MPC update. 

In this paper, we propose a concept of obstacle filtering 

concept and algorithm for the prediction of the motion of obstacle 

vehicle objects around an autonomous vehicle in public traffic. 

The algorithm may mimic human driver like cognitive actions [19] 

and covers three procedures: risk assessment, obstacle grouping 

and group boundary re-generation. This algorithm adaptively 

refines the constrain set to create a configuration space that 

excludes undesired local or global minima from possible overlaps 

of elliptic geometries, thus improving the performance of the 

MPC optimization solver in finding the best solution for the 

motion plans. The performance of the algorithm will be illustrated 

through a simulation of ACV in highway scenarios with several 

surrounding object (OVs). 

The rest of the paper is organized as follows. Section 2 

introduces the control framework. Section 3 details the obstacle 

filtering algorithm and Section 4 briefly reviews the 

configuration of the hybrid predictive trajectory guidance in 

which the filtering algorithm is to be embedded with. Simulation 

results are included in Section 5 to illustrate the workings of the 

proposed framework. Section 6 presents the conclusions of this 

contribution. 

 

2. CONTROL FRAMEWORK 
 

As mentioned above, the proposed obstacle filtering 

algorithm is incorporated into the obstacle motion prediction 

module of hybrid predictive control framework for autonomous 

vehicles that the authors presented earlier in [14], [15]. In the 

context of the present paper, the control framework is updated as 

shown in Fig. 1. Basically, it consists of five modules: 

environment recognition, route navigator, obstacle motion 

prediction, hybrid predictive trajectory guidance (HPTG) and 

vehicle dynamics control (VDC).  

 

 
 

Figure 1. CONTROL FRAMEWORK 
 

The environment recognition module captures the 

environment information, such as lane marks, traffic signs or 

signals, the size or states of moving objects, the state of the ACV 

and its localization through camera, radar, lidar or wireless 

devices. The route navigator module works as a general GPS 

navigator, which plans the route from initial position to target 

destination based via some algorithm on a map and localization 

of the controlled vehicle. In the following discussions, we assume 

all the information from environment recognition and route 

navigator are known to the guidance system. 

The obstacle motion prediction module estimates the future 

motion of the obstacles and collision areas based on current 

measurements. Here, obstacles refers mostly to object vehicles 

(OVs) and they are all described by moving conservative ellipses 
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representing collision areas, in the configuration space. This  

module includes the three procedures of the object filtering 

algorithms: 1) Risk assessment, where the detected surrounding 

OV will be filtered by evaluating their risk of having collision 

with the autonomously controlled vehicle (ACV); 2) Obstacle 

grouping, where, based on their distances between each other, the 

filtered OVs will be grouped into different sub-lists that have 

intersecting collision areas; 3) Group boundary regeneration, 

where, the elliptical collision area of OVs in the same group will 

be covered by optimally parameterized hyper-elliptical boundary 

that includes all collision areas in the same group . Therefore, the 

obstacle motion prediction of the collision area for individual 

OVs will be transformed to OV groups. This reduces the 

difficulty of using large numbers of independent descriptions of 

OVs for collision avoidance constrains in the MPC formulation. 

Further details on the module will be given in the next section. 

The HPTG module is responsible for the maneuver and 

trajectory planning of the ACV. A hierarchical planning structure 

is applied in this module: at the top, suite of finite state machines 

representing different maneuvers are selected, and at the bottom, 

a MPC-based trajectory planner computes the control references 

for the vehicle dynamics control level (VDC). The maneuver 

planning at the top can be either rule-based or optimization based. 

For rule-based maneuver planning, a maneuver will be selected 

based on pre-defined rules; while in the optimization-based 

maneuver planning, several pre-selected maneuvers will be sent 

to the MPC to solve for the optimal maneuver plans as well as the 

related trajectory plans. Interested readers are referred to [14] [15] 

for more detailed descriptions of the HPTG module. Details on 

the lower level VDC options can be found in [20]. 

 

3. Motion Prediction of Object Vehicles 
 

To provide obstacle information for the MPC in the HPTG, 

the predicted motion of the OVs needs to be estimated by some 

motion model within the prediction horizon Hp, which is 

discretized with Np samples; the time interval between two 

adjacent samples is Δt, thus Hp = NpΔt. In this work, we adopt a 

simple kinematics model for the motion of objects using current 

measurements (assumed available from sensing or V2V/I 

communications). Considering a road frame s/ye on a reference 

path, e.g. the center line of a lane, as shown in Fig. 1, the predicted 

longitudinal and lateral positions soi,ye,oi
 of OV i can be defined 

by:  

 2

,0 , ,

1

2i ii i

s s

o o t o t os s v t a t              (1) 

2

, , ,0 , ,

1

2i ii i

s s
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where, t is the time in the prediction model (which evolves the 

same as, and shares the re-set of the internal time defined in 

the MPC optimization). The position estimation is based on 

the current measurement of the longitudinal velocity vt,oi
s , 

longitudinal acceleration at,oi
s , lateral velocity vn,oi

s  and lateral 

acceleration an,oi
s . The acceleration components at the initial 

time(at MPC update/measurement) at,oi
s  and an,oi

s  are assumed 

constant for the prediction horizon. The initial positions of object 

i (at prediction) are denoted by (soi,0,ye,oi,0
).  

 
 

Figure 2. OBJECT VEHICLE MOTION DEFINITION IN 
ROAD REFERENCE FRAME 

 

The related elliptical collision area for the ACV to avoid is 

described by  

2 2
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    
    

       

         (3) 

where ye,A, sA are the longitudinal and lateral positions of the ACV 

in the road frame. Δy
e,oi

and Δsoi are calculated by incorporating 

the geometry (length and width), velocity and the posture of the 

OVs and the ACV on the configuration space [12] [13]. 

 

3.1 Risk assessment 
The risk here are associated with physical collision between 

the ACV and OVs, which is represented by the ACV entering the 

collision area defined around the OVs. Based on the kinematics 

model used to predict the motion of OVs, we use time to collision 

(TTC) Tc as an indicator to assess the risk of collision with in the 

detection range sd, of the deployed sensors. Thus, we can define 

a range between ACV and OV i where a collision might happen 

along the reference path within a specified positive time Tc as: 

ioA ds s s                  (4) 

, ,

0

i

i A

c

t A

o

ot

s s

s s
T

v v


 


               (5) 

where sA, vs
t,A are the longitudinal position and velocity of the 

ACV in the road frame. The OVs with their states satisfying both 

Eq. (4) and (5) will be considered to enough proximity to have 

potential danger of collision with the ACV, regardless of which 

lane they occupy. 

 

3.2 Obstacle Grouping 
In obstacle grouping, two step are followed. First, we need 

to determine if two OVs have intersecting collision areas. The 

sufficient condition for no overlapping of two ellipses with their 

axes (either major axes or minor axes) parallel to each other can 
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be easily derived. Second, this condition is applied to all the OVs 

filtered by the risk assessment step, to identify the groups and 

OVs belonging to each group.  

 

 
 

Figure 3. DEFINITION OF TWO ELLIPSES WITH THEIR 
AXES PARALLEL TO EACH OTHER 

 

Any two ellipses with their axes parallel to each other, as 

shown in Fig. 3, can be defined by the following standard forms: 
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where [xE1, yE1], [xE2, yE2] are the points on the two ellipses. [x1, 

y1], [x2, y2] are the center of the two ellipses. a1, a2 are the half 

major axes of the two ellipses. b1, b2 represent the half minor axes 

of the two ellipses. 

Starting with external tangentiality condition, it can be 

shown that the sufficient condition for two given ellipses to not 

overlap with each other is to simultaneously satisfy Eq.(8) and (9). 

See Appendix A for the derivation of these conditions. 
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Therefore, we can design a function Jo in Eq.(10) to identify 

the overlap condition of any two OVs i and j by comparing Jo 

with 2: if Jo≥2, the collision area of OV i and OV j don’t overlap; 

if Jo<2, the collision area of OV i and OV j overlap. 
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Then, we can define the group by the following statement: A 

group consists of set of OVs where for anyone OV in the group, 

there is another OV with a collision area overlapping with it.  

 

3.3 Group Boundary Regeneration 
After identifying the OV groups, a new collision area can be 

regenerated for the group to cover the collision areas of all OVs 

in the group and systematically exclude the undesired local and 

global minimums that come from overlapping elliptical 

intersections (Fig.4). Here, we use the 4th order hyper ellipse to 

re-generate the boundary. This algebraic geometry requires few 

parameters to characterize and define a continuous boundary for 

the conservative collision area of the group. Below, we shall seek 

the tightest description of this boundary that doesn’t waste too 

much collision free space. 

 

 
Figure 4. EXAMPLE OF 4TH ORDER HYPER ELLIPTICAL 

GROUP BOUNDARY REGENERATION  
 

To being with, the 4th order hyper elliptical boundary for the 

ACV to avoid group i is defined as: 

4 4
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where sGi
,y
e,𝐺i

 are the center position of the group i, which can 

be obtained by taking the average of the longitudinal and lateral 

positions of the constituent OVs in the group. However, the 

lateral position y
e,𝐺i

, also depends on the positions of the element 

OVs. If one of the OVs is on the side lane next to the road 

boundary, y
e,𝐺i

 can be placed on the road boundary to guide the 

ACV to the available lanes on the other side of the road and to 

avoid creating local minimums at the intersections of the hyper 

elliptical boundary and the road boundary, as show in Fig. 4 (left). 
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where NGi is the number of OVs in group i. 

The half minor and half major axes Δy
e,Gi

and ΔsGi
 of the 

tightest boundary of the group can be determined by posing an 

optimization problem. That is, we seek to find the hyper ellipse 

with minimum area that covers all the collision areas of the 

constituent OVs. As the area of a hyper ellipse is proportional to 

the product of the length of the major and minor axes, the 

optimization problem can be defined as: 
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where ss,Gi
,y

e,s,Gi
 are the position vectors including the 

longitudinal and lateral positions [ss,Gi
,y
e,s,Gi

] sampled from the 

boundary of the hyper ellipse by using the parametric equations 

of a 4th order hyper ellipse: 

  , cos sgn cos
i i is G G Gs s s            (16) 

 , , , ,G sin sgn sin
i i ie s G e G ey y y          (17) 

where θ is a parameter sampled from –π to π.  

This optimization problem can be solved efficiently if good 

initial guesses are given. Fig.5 shows the execution time for 

solving the optimization problem under different numbers of OVs 

located randomly and sampling points on the hyper ellipse. All 

the problems are solved via active-set sequential quadratic 

programming (SQP) method in MATLAB Optimization Toolbox 

running in a laptop with Intel i5 4200U CPU, 2.4GHz and 4G 

RAM. It can be seen that with more object vehicles and finer 

sampling of the hyper ellipse, the execution times can be 

substantial (order of 40ms with 10 OVs and 500 samples). Since 

this boundary regeneration step must be solved for each 

discretization step of the prediction horizon independently, the 

computations should ideally be done in parallel without adding to 

the execution time. This can be done on graphics processors 

which are likely available onboard ACVs for signal processing 

and object identification [21]. 

By following the three steps of the obstacle filtering 

algorithm, and applying them to all discretization steps of the 

prediction horizon, the parameters defining the obstacle 

avoidance constraint can be determined for the whole horizon and 

sent to the HPTG module for motion planning.   

 

 
Figure 5. ESTIMATED EXECUTION TIMES FOR 

SOLVING THE OPTIMIZATION PROBLEM OF EQ.(14)  
 

4. Hybrid Predictive Trajectory Guidance 
 

We embed the above algorithm within the constraint 

formulations for the HPTG module described in our prior work 

[15]. The multi-objective optimization problem solved at each 

MPC update is: 
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subject to :        ,x f x u u U  x X (19)


1 1y A x  


2 2y A x  


0(0)x x  

  0 ,c x u  

Here, x covers all the state variables of the planning model 

(ACV motion model, path and vehicle dynamics constraints) and 

slack variables for constraint adaptation and maneuver/lane 

selection. X represents the state space for x. Zq, is the maneuver 

selection variable with index q, included in the state in x and it 

should satisfy: 

1, [0,1]q q

q Q

Z Z


             (24) 

Q is the maneuver set. x0 denotes the current/initial state. r1,q, r2, 

are, respectively, the candidate references on different maneuvers 

and the slack variables. P1, P2 and R are the weighting matrices 

for the candidate maneuver tracking error, slack variable for 

reference tracking error and control efforts, respectively. y1, y2 are 
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the system outputs, including the speed and lateral position of the 

ACV and the slack variables. The control vector u includes the 

longitudinal and lateral reference inputs to the lower level VDC. 

The control is treated as piecewise constant, as uk ,in the MPC 

optimization and only the first step u1 will be applied to ACV 

before the next MPC update step. U denotes the admissible set 

for u. All the nonlinear constraints such as road-friction limits, as 

well as the individual OV collision avoidance constraints (3) and 

the group hyper ellipse (11) are included in the compact notation 

(23). Readers are referred to [15] for a more detailed description 

of the HPTG module. 

 

5. Results and Discussion 
 

In this section, we include some simulation results to 

illustrate the benefit of using the obstacle filtering algorithm 

when ACV faces complex traffic situations. For example, when a 

group of slower OVs in front of ACV creates an area, which leads 

to undesirable global minimums for the maneuver planning and 

local minimums for the trajectory planning.  

 

 
(a) SCENARIO 1 

 

 
(b) SCENARIO 2 

 
Figure 6. HIGHWAY SCENARIO DESCRIPTION WITH 

SINGLE GROUP OF OVS 
Firstly, two highway scenarios with six lanes and four OVs 

shown in Fig. 6a, b. are used for illustration. Scenario 1 happens 

in the middle of the roadway, while Scenario 2 happens near one 

side of the roadway. In both of these scenarios, the OVs are set to 

be running at the same constant speed at 25m/s that is lower than 

the desired cruise speed of the ACV at 30m/s. When obstacle 

filtering algorithm is applied, the overlapped elliptical collision 

boundary will be replaced by an extended hyper elliptical 

boundary with parameters calculated using Eqs. (12)-(14). 

Otherwise, the original elliptical collision area for each individual 

OV will be used for obstacle avoidance.  

To clearly show the relative positions between the OV and 

the ACV in the configuration space, we use the relative path 

profile, which describes the positions in a moving coordinate 

Δs/ye at the same speed along the reference path as the OVs. Thus 

the OVs will be static in this coordinate but the path profile of the 

ACV and its planned path, if at differing speeds, will be described 

by curves in the coordinate.  

Fig.7 and 8 show the results of the ACV in Scenario 1 with 

and without applying the obstacle filtering algorithm. We can see 

in the case with obstacle filtering, ACV initially plans to slow 

down when it detects OV 2 in front. When it approaches the hyper 

elliptical boundary, it plans to change lane to the right to avoid 

the group of OVs. As this boundary moves with the group of OVs, 

smooth trajectories are planned during the obstacle avoidance. 

While in the case w/o obstacle filtering, it plans to slow down to 

follow OV 2 (a global minimum for maneuver planning) and the 

ACV can’t maintain or return to its desired cruise speed. 

 

 
Figure 7. RESULTS FOR SCENARIO 1 WITH OBSTACLE 

FILTERING  
 

 
Figure 8. RESULTS FOR SCENARIO 1 WITHOUT 

OBSTACLE FILTERING 
 

Fig.9,10 shows the results of ACV in Scenario 2 with and 

without applying the obstacle filtering algorithm. In the former 

case, ACV initially plans to slow down when it approaches the 

hyper elliptical boundary. Then, it plans to change lane to the lane 

5 at the left to avoid the group of OVs, while increasing its speed 

to track the reference. However, in the case w/o obstacle filtering, 

it plans to slow down first and then change lane to the left. But 

the left lane is also occupied by OV2, thus the ACV moves back 

to lane 1 and finally follows the slower OV 1, which is also an 
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undesirable global minimum for maneuver planning. 

 
Figure 9. RESULTS FOR SCENARIO 2 WITH OBSTACLE 

FILTERING  
 

 
Figure 10. RESULTS FOR SCENARIO 2 WITHOUT 

OBSTACLE FILTERING  
 

 
Figure 11. RESULTS FOR SCENARIO 3 WITH 

OBSTACLE FILTERING  
 

Finally, a highway scenario 3 with 8 OVs shows the results 

for multiple OVs grouping and the dynamic change of the group 

boundary, as depicted in Fig. 11. Here, all of the OVs are running 

at 25m/s except for OV7, which is at speed of 27.5m/s. OV1, 2 

and 3 present the first group that ACV will face. When ACV 

passes the first group by changing lane to lane 3, as OV7 is 

approaching the group of OV5 and 6, it also connect OV6 with 

OV8, thus the original group OV5 and 6 will be extended to a 

bigger group including from OV5 to OV8. This group change is 

consider by the HPTG in the prediction horizon and it guides the 

ACV to change back to lane 2 to avoid the new group. Finally 

ACV changes lane to lane 1 to pass the single OV4. 

 
6. CONCLUSION 

In this paper, we proposed an obstacle filtering algorithm to 

pre-processes the obstacle information for the hybrid predictive 

control of autonomous road vehicle in public traffic. The 

algorithm has the following steps. First, Time to Collision is used 

as risk assessment indicator to filter the potentially dangerous 

object vehicles (OV) around the autonomously controlled vehicle 

(ACV). Then different OV groups are created for OVs with 

overlapping elliptical collision areas. Finally, the boundary of the 

group will be described by a 4th order hyper ellipse to define an 

extended collision area which covers all the independent collision 

areas of the OVs inside the group. This helps to exclude the 

undesired global minimums or local minimums, thus simplifies 

the planning problem by changing the configuration space. The 

performance of the collaborated control system is illustrated via 

the simulations on highway scenarios to avoid a group of OVs. 

 

REFERENCE 

[1]  C. Goerzen, Z. Kong and B. Mettler, "A Survey of 

Motion Planning Algorithms from the Perspective of 

Autonomous UAV Guidance," Journal of Intelligent and 
Robotic Systems, vol. 57, no. 1-4, pp. 65-100, 2010.  

[2]  A. Liniger and J. Lygeros, "A viability approach for fast 

recursive feasible finite horizon path planning of 

autonomous RC cars," in Proceedings of the 18th 

International Conference on Hybrid Systems: 
Computation and Control, Seattle, Washington, USA, 

2015.  

[3]  E. Frazzoli, M. Dahleh and E. Feron, "Real-time motion 

planning for agile autonomous vehicles," in American 

Control Conference, Arlington, VA, USA, 2001.  

[4]  S. M. LaValle, Planning Algorithms, Cambridge 

University Press, 2006.  

[5]  K. Kant and S. W. Zucker, "Toward efficient trajectory 

planning: The path-velocity decomposition," The 

International Journal of Robotics Research, vol. 5, no. 

3, pp. 72-89, 1986.  

[6]  D. Ferguson, M. Likhachev and A. Stentz, "A guide to 

heuristic-based path planning," in Proceedings of the 
international workshop on planning under uncertainty 

for autonomous systems, international conference on 

automated planning and scheduling (ICAPS), 2005.  

[7]  S. Boyd and L. Vandenberghe, Convex optimization, 

Cambridge university press, 2004.  

7 Copyright © 2016 by ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/conferences/asmep/91128/ on 04/25/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



 

[8]  J. Maciejowski, Predictive Control: With Constraints, 

Harlow, UK: Prentice-Hall, 2002.  

[9]  G. Prokop, "Modeling human vehicle driving by model 

predictive online optimization," Vehicle System 

Dynamics, vol. 35, no. 1, pp. 19-53, 2001.  

[10]  J. Liu, P. Jayakumar, J. L. Stein and T. Ersal, "An MPC 

Algorithm with Combined Speed and Steering Control 

for Obstacle Avoidance in Autonomous Ground 

Vehicles," in ASME 2015 Dynamic Systems and Control 

Conference, Columbus, OH, 2015.  

[11]  Y. Gao, T. Lin, F. Borrelli, E. Tseng and D. Hrovat, 

"Predictive control of autonomous ground vehicles with 

obstacle avoidance on slippery roads," in ASME 2010 

Dynamic Systems and Control Conference, Cambridge, 

Massachusetts, 2010.  

[12]  T. Weiskircher and B. Ayalew, "Predictive Control for 

Autonomous Driving in Dynamic Public Traffic," in 

American Control Conference, Chicago, IL, 2015.  

[13]  T. Weiskircher, Q. Wang and B. Ayalew, "A Predictive 

Guidance and Control Framework for 

(Semi-)Autonomous Vehicles in Public Traffic," IEEE 
Transactions on control systems technology. (Under 

Review) 

[14]  Q. Wang, T. Weiskircher and B. Ayalew, "A Hierarchical 

Hybrid Predictive Control of an Autonomous Vehicle," 

in ASME 2015 Dynamic System and Control 

Conference, Columbus, Ohio, USA, 2015.  

[15]  Q. Wang, B. Ayalew and T. Weiskircher, "Optimal 

Assigner Decisions in Predictive Control of an 

Autonomous Road Vehicle," in American Control 

Conference, Boston, MA, USA, 2016.  

[16]  J. Nilsson, P. Falcone, M. Ali and J. Sjöberg, "Receding 

horizon maneuver generation for automated highway 

driving," Control Engineering Practice, vol. 41, pp. 

124-133, 2015.  

[17]  U. Rosolia, F. Braghin, A. Alleyne and E. Sabbioni, 

"NLMPC for Real Time Path Following and Collision 

Avoidance," SAE International Journal of Passenger 
Cars-Electronic and Electrical Systems, vol. 8, no. 2, pp. 

401-405, 2015.  

[18]  M. S. Menon and A. Ghosal, "Obstacle avoidance for 

hyper-redundant snake robots and one dimensional 

flexible bodies using optimization," in 14th World 

Congress in Mechanism and Machine Science, Taipei, 

Taiwan, 2015.  

[19]  D. D. Salvucci, "Modeling driver behavior in a cognitive 

architecture," The Journal of the Human Factors and 

Ergonomics Society, vol. 48, no. 2, pp. 362-380, 2006.  

[20]  T. Weiskircher and B. Ayalew, "Frameworks for 

Interfacing Trajectory Tracking with Predictive 

Trajectory Planning for Autonomous Road Vehicle 

Control," in American Control Conference, Chicago, IL, 

USA, 2015.  

[21]  Y. Cao, A. Seth and C. D. Laird, "An augmented 

Lagrangian interior-point approach for large-scale NLP 

problems on graphics processing units," Computers & 

Chemical Engineering, vol. 85, pp. 76-83, 2016.  

 

 

ANNEX A 

PROOF OF THE SUFFICIENT CONDITION FOR NON-OVERLAPPING OF TWO ELLIPSES WITH AXLES PARALLEL 
TO EACH OTHER 

 

Use the parametric equation to describe the position of the ellipse defined in in Eq. (6),(7), we obtain: 

 

1 1 1 1

1 1 1 1

cos

sin

E

E

x x a

y y b





 


 
                                     (25) 

22

2 2 2

2 2

2

cos

sin

E

E

x x a

y y b





 


 
                                    (26) 

 

 

Considering the externally tangential condition of the two ellipses defined in Eq. (25),(26), as shown in Fig. 11, the position of the 

intersection between the two ellipses at the comment tangent should satisfied: 

 

1
1

2
2

21

cot cot
b b

a a
 

 
                                     (27) 
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Figure 11. EXTERNAL TANGENCY OF THE TWO ELLIPSES 

 

Assume ellipse 1 is fixed, combining Eq.(25)-(26), the algebraic equation for the center of ellipse 2 that externally tangential to 

the ellipse 1 can be derived by: 

 

2

2 1
2 2 2 2 2 2

1 1 1

2

2 1

2 1
1 1

2 2 1

1 2

2 2 2 2 2 2

1 1 1

1 1

2 2 1

cos
cos sin

sin
cos sin

a b
x x a

a b a b

a b
y y b

a b a b


 


 

  
    

    


 
   
   

                        (28) 

which is bounded by  

2 1
1 1

2 1

1 2
1 1

2 1

2

2 1

1 2

2

2 1

1 2

cos
min[ , ]

sin
min[ , ]

a b
x x a

a b a b

a b
y y b

a b a b





  
    

  


 
   

 

                             (29) 

Thus the sufficient condition for the split of ellipse 2 from ellipse 1 can be defined by:  

 

2

2 2

1 2

2 2

1 2 1

2 1 1 2

1 2

1 1

2 1 2 1

1

min[ , ] min[ , ]

x x y y

a b a b
a b

a b a b a b a b

   
   

 
    
   

    
   

                       (30) 

 

Similarly, if ellipse 2 is fixed, the sufficient condition for the split of ellipse 1 from ellipse 2 can be defined by: 

1

2 2

1 2 2 1
2 2

1

2 2

2 1 2

22 11 2 12

1

min[ , ] min[ , ]

x x y y

a b a b
a b

a b a b a b a b

   
   

 
    
   

    
   

                        (31) 

Therefore, simultaneously satisfying Eq. (30) and (31) guarantees the non-overlap of the two ellipses with parallel axles. 
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